what an amusing thread, or rather, what amusing responses!!!!
It's all got to do with the kinetic energy of the moving object which gets dissipated in a crash. Here's the theory (from what I can remember from high school and uni).
Kinetic Energy (KE) = 1/2 x mass (m) x velocity squared (v^2)
If a GTP weighing 2000kg drives at 100 km/h (27.8 m/s), it's Kinetic Energy is 1/2 x 2000 x (27.8)^2 = 772,840 Joules. If it hits an immovable object, then in the crash you dissipate 773 kJ of energy through your GTP (assuming no energy is absorbed by the immovable object)
Now, if 2 GTPs travelling in opposite directions at 100 km/h each hit head on, then each will be carrying 773 kJ of kinetic energy which is dispensed equally among them, so a total of 1546 kJ of energy divided by 2 cars = 773 kJ each ... same as hitting an immovable object in one car.
However, if a GTP is travelling at 200 km/h (55.6 m/s), your Kinetic Energy is 1/2 x 2000 x (55.6)^2 = 3091 kJ, or four times the kinetic energy of travelling 100 km/h (double the speed = four times the KE). So, if you hit an immovable object at 200 km/h, you have to dissipate 3091 KJ of energy through one GTP. This goes to show that two cars colliding head on at 100 km/h each is not the equivalent of hitting a solid wall at 200 km/h, actually, you're 4 times better off!!!!!
Drive slow people, Merry X'mas
|